MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. 772.0 Aluminum

Both 5082 aluminum and 772.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is 772.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
69
Elongation at Break, % 1.1
6.3 to 8.4
Fatigue Strength, MPa 110 to 130
94 to 160
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 25
26
Tensile Strength: Ultimate (UTS), MPa 380 to 400
260 to 320
Tensile Strength: Yield (Proof), MPa 300 to 340
220 to 250

Thermal Properties

Latent Heat of Fusion, J/g 400
380
Maximum Temperature: Mechanical, °C 180
180
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 560
580
Specific Heat Capacity, J/kg-K 910
870
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
35
Electrical Conductivity: Equal Weight (Specific), % IACS 110
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 8.9
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
16 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
350 to 430
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
46
Strength to Weight: Axial, points 39 to 41
25 to 31
Strength to Weight: Bending, points 43 to 45
31 to 36
Thermal Diffusivity, mm2/s 54
58
Thermal Shock Resistance, points 17 to 18
11 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.5 to 96
91.2 to 93.2
Chromium (Cr), % 0 to 0.15
0.060 to 0.2
Copper (Cu), % 0 to 0.15
0 to 0.1
Iron (Fe), % 0 to 0.35
0 to 0.15
Magnesium (Mg), % 4.0 to 5.0
0.6 to 0.8
Manganese (Mn), % 0 to 0.15
0 to 0.1
Silicon (Si), % 0 to 0.2
0 to 0.15
Titanium (Ti), % 0 to 0.1
0.1 to 0.2
Zinc (Zn), % 0 to 0.25
6.0 to 7.0
Residuals, % 0 to 0.15
0 to 0.15