MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. 8090 Aluminum

Both 5082 aluminum and 8090 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is 8090 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
67
Elongation at Break, % 1.1
3.5 to 13
Fatigue Strength, MPa 110 to 130
91 to 140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
25
Tensile Strength: Ultimate (UTS), MPa 380 to 400
340 to 490
Tensile Strength: Yield (Proof), MPa 300 to 340
210 to 420

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 640
660
Melting Onset (Solidus), °C 560
600
Specific Heat Capacity, J/kg-K 910
960
Thermal Conductivity, W/m-K 130
95 to 160
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
20
Electrical Conductivity: Equal Weight (Specific), % IACS 110
66

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
18
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.9
8.6
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1180
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
16 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
340 to 1330
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
50
Strength to Weight: Axial, points 39 to 41
34 to 49
Strength to Weight: Bending, points 43 to 45
39 to 50
Thermal Diffusivity, mm2/s 54
36 to 60
Thermal Shock Resistance, points 17 to 18
15 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.5 to 96
93 to 98.4
Chromium (Cr), % 0 to 0.15
0 to 0.1
Copper (Cu), % 0 to 0.15
1.0 to 1.6
Iron (Fe), % 0 to 0.35
0 to 0.3
Lithium (Li), % 0
2.2 to 2.7
Magnesium (Mg), % 4.0 to 5.0
0.6 to 1.3
Manganese (Mn), % 0 to 0.15
0 to 0.1
Silicon (Si), % 0 to 0.2
0 to 0.2
Titanium (Ti), % 0 to 0.1
0 to 0.1
Zinc (Zn), % 0 to 0.25
0 to 0.25
Zirconium (Zr), % 0
0.040 to 0.16
Residuals, % 0 to 0.15
0 to 0.15