MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. AM100A Magnesium

5082 aluminum belongs to the aluminum alloys classification, while AM100A magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is AM100A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
46
Elongation at Break, % 1.1
1.0 to 6.8
Fatigue Strength, MPa 110 to 130
48 to 70
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
18
Shear Strength, MPa 210 to 230
90 to 150
Tensile Strength: Ultimate (UTS), MPa 380 to 400
160 to 270
Tensile Strength: Yield (Proof), MPa 300 to 340
78 to 140

Thermal Properties

Latent Heat of Fusion, J/g 400
350
Maximum Temperature: Mechanical, °C 180
140
Melting Completion (Liquidus), °C 640
590
Melting Onset (Solidus), °C 560
460
Specific Heat Capacity, J/kg-K 910
990
Thermal Conductivity, W/m-K 130
73
Thermal Expansion, µm/m-K 24
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
11
Electrical Conductivity: Equal Weight (Specific), % IACS 110
59

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
1.7
Embodied Carbon, kg CO2/kg material 8.9
22
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1180
1000

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
1.3 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
66 to 210
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
70
Strength to Weight: Axial, points 39 to 41
25 to 44
Strength to Weight: Bending, points 43 to 45
38 to 54
Thermal Diffusivity, mm2/s 54
43
Thermal Shock Resistance, points 17 to 18
9.7 to 17

Alloy Composition

Aluminum (Al), % 93.5 to 96
9.3 to 10.7
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.15
0 to 0.1
Iron (Fe), % 0 to 0.35
0
Magnesium (Mg), % 4.0 to 5.0
87.9 to 90.6
Manganese (Mn), % 0 to 0.15
0.1 to 0.35
Nickel (Ni), % 0
0 to 0.010
Silicon (Si), % 0 to 0.2
0 to 0.3
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0 to 0.3
Residuals, % 0
0 to 0.3