MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. B535.0 Aluminum

Both 5082 aluminum and B535.0 aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is B535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
66
Elongation at Break, % 1.1
10
Fatigue Strength, MPa 110 to 130
62
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
25
Shear Strength, MPa 210 to 230
210
Tensile Strength: Ultimate (UTS), MPa 380 to 400
260
Tensile Strength: Yield (Proof), MPa 300 to 340
130

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 560
550
Specific Heat Capacity, J/kg-K 910
910
Thermal Conductivity, W/m-K 130
96
Thermal Expansion, µm/m-K 24
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
24
Electrical Conductivity: Equal Weight (Specific), % IACS 110
82

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.9
9.4
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
22
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
51
Strength to Weight: Axial, points 39 to 41
28
Strength to Weight: Bending, points 43 to 45
35
Thermal Diffusivity, mm2/s 54
40
Thermal Shock Resistance, points 17 to 18
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.5 to 96
91.7 to 93.4
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.15
0 to 0.1
Iron (Fe), % 0 to 0.35
0 to 0.15
Magnesium (Mg), % 4.0 to 5.0
6.5 to 7.5
Manganese (Mn), % 0 to 0.15
0 to 0.050
Silicon (Si), % 0 to 0.2
0 to 0.15
Titanium (Ti), % 0 to 0.1
0.1 to 0.25
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.15