MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. EN AC-45300 Aluminum

Both 5082 aluminum and EN AC-45300 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is EN AC-45300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
71
Elongation at Break, % 1.1
1.0 to 2.8
Fatigue Strength, MPa 110 to 130
59 to 72
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
27
Tensile Strength: Ultimate (UTS), MPa 380 to 400
220 to 290
Tensile Strength: Yield (Proof), MPa 300 to 340
150 to 230

Thermal Properties

Latent Heat of Fusion, J/g 400
470
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 560
590
Specific Heat Capacity, J/kg-K 910
890
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
36
Electrical Conductivity: Equal Weight (Specific), % IACS 110
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.9
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
2.7 to 5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
160 to 390
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
50
Strength to Weight: Axial, points 39 to 41
23 to 29
Strength to Weight: Bending, points 43 to 45
30 to 35
Thermal Diffusivity, mm2/s 54
60
Thermal Shock Resistance, points 17 to 18
10 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.5 to 96
90.2 to 94.2
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.15
1.0 to 1.5
Iron (Fe), % 0 to 0.35
0 to 0.65
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 4.0 to 5.0
0.35 to 0.65
Manganese (Mn), % 0 to 0.15
0 to 0.55
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0 to 0.2
4.5 to 5.5
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.1
0 to 0.25
Zinc (Zn), % 0 to 0.25
0 to 0.15
Residuals, % 0 to 0.15
0 to 0.15