MakeItFrom.com
Menu (ESC)

5082 Aluminum vs. C91300 Bell Metal

5082 aluminum belongs to the aluminum alloys classification, while C91300 bell metal belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5082 aluminum and the bottom bar is C91300 bell metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
100
Elongation at Break, % 1.1
0.5
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 25
38
Tensile Strength: Ultimate (UTS), MPa 380 to 400
240
Tensile Strength: Yield (Proof), MPa 300 to 340
210

Thermal Properties

Latent Heat of Fusion, J/g 400
180
Maximum Temperature: Mechanical, °C 180
150
Melting Completion (Liquidus), °C 640
890
Melting Onset (Solidus), °C 560
820
Specific Heat Capacity, J/kg-K 910
360
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
7.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
39
Density, g/cm3 2.7
8.6
Embodied Carbon, kg CO2/kg material 8.9
4.5
Embodied Energy, MJ/kg 150
74
Embodied Water, L/kg 1180
460

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 4.3
1.1
Resilience: Unit (Modulus of Resilience), kJ/m3 670 to 870
210
Stiffness to Weight: Axial, points 14
6.6
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 39 to 41
7.8
Strength to Weight: Bending, points 43 to 45
10
Thermal Shock Resistance, points 17 to 18
9.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.5 to 96
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.15
79 to 82
Iron (Fe), % 0 to 0.35
0 to 0.25
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.2
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
18 to 20
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.6