MakeItFrom.com
Menu (ESC)

5083 Aluminum vs. 5070 Aluminum

Both 5083 aluminum and 5070 aluminum are aluminum alloys. Their average alloy composition is basically identical. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 5083 aluminum and the bottom bar is 5070 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 1.1 to 17
20
Fatigue Strength, MPa 93 to 190
150
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 170 to 220
190
Tensile Strength: Ultimate (UTS), MPa 290 to 390
300
Tensile Strength: Yield (Proof), MPa 110 to 340
140

Thermal Properties

Latent Heat of Fusion, J/g 400
390
Maximum Temperature: Mechanical, °C 190
190
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 580
550
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
31
Electrical Conductivity: Equal Weight (Specific), % IACS 96
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.9
8.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 42
51
Resilience: Unit (Modulus of Resilience), kJ/m3 95 to 860
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 29 to 40
31
Strength to Weight: Bending, points 36 to 44
37
Thermal Diffusivity, mm2/s 48
53
Thermal Shock Resistance, points 12 to 17
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92.4 to 95.6
92.4 to 95.7
Chromium (Cr), % 0.050 to 0.25
0 to 0.3
Copper (Cu), % 0 to 0.1
0 to 0.25
Iron (Fe), % 0 to 0.4
0 to 0.4
Magnesium (Mg), % 4.0 to 4.9
3.5 to 4.5
Manganese (Mn), % 0.4 to 1.0
0.4 to 0.8
Silicon (Si), % 0 to 0.4
0 to 0.25
Titanium (Ti), % 0 to 0.15
0 to 0.15
Zinc (Zn), % 0 to 0.25
0.4 to 0.8
Residuals, % 0 to 0.15
0 to 0.15