MakeItFrom.com
Menu (ESC)

5083 Aluminum vs. 5449 Aluminum

Both 5083 aluminum and 5449 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 5083 aluminum and the bottom bar is 5449 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
69
Elongation at Break, % 1.1 to 17
4.0 to 17
Fatigue Strength, MPa 93 to 190
78 to 120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 170 to 220
130 to 190
Tensile Strength: Ultimate (UTS), MPa 290 to 390
210 to 330
Tensile Strength: Yield (Proof), MPa 110 to 340
91 to 260

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 190
190
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 580
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 120
140
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
35
Electrical Conductivity: Equal Weight (Specific), % IACS 96
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.9
8.5
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 42
12 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 95 to 860
60 to 480
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 29 to 40
22 to 33
Strength to Weight: Bending, points 36 to 44
29 to 39
Thermal Diffusivity, mm2/s 48
56
Thermal Shock Resistance, points 12 to 17
9.4 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92.4 to 95.6
94.1 to 97.8
Chromium (Cr), % 0.050 to 0.25
0 to 0.3
Copper (Cu), % 0 to 0.1
0 to 0.3
Iron (Fe), % 0 to 0.4
0 to 0.7
Magnesium (Mg), % 4.0 to 4.9
1.6 to 2.6
Manganese (Mn), % 0.4 to 1.0
0.6 to 1.1
Silicon (Si), % 0 to 0.4
0 to 0.4
Titanium (Ti), % 0 to 0.15
0 to 0.1
Zinc (Zn), % 0 to 0.25
0 to 0.3
Residuals, % 0 to 0.15
0 to 0.15

Comparable Variants