MakeItFrom.com
Menu (ESC)

5083 Aluminum vs. EN 1.7729 Steel

5083 aluminum belongs to the aluminum alloys classification, while EN 1.7729 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5083 aluminum and the bottom bar is EN 1.7729 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75 to 110
270
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.1 to 17
17
Fatigue Strength, MPa 93 to 190
500
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 170 to 220
560
Tensile Strength: Ultimate (UTS), MPa 290 to 390
910
Tensile Strength: Yield (Proof), MPa 110 to 340
750

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 190
430
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 580
1430
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 120
40
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 96
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.8
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.9
3.3
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1170
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.2 to 42
150
Resilience: Unit (Modulus of Resilience), kJ/m3 95 to 860
1500
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 29 to 40
32
Strength to Weight: Bending, points 36 to 44
27
Thermal Diffusivity, mm2/s 48
11
Thermal Shock Resistance, points 12 to 17
27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92.4 to 95.6
0.015 to 0.080
Arsenic (As), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0.050 to 0.25
0.9 to 1.2
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0 to 0.4
94.8 to 97
Magnesium (Mg), % 4.0 to 4.9
0
Manganese (Mn), % 0.4 to 1.0
0.35 to 0.75
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.4
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.15
0.070 to 0.15
Vanadium (V), % 0
0.6 to 0.8
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0