MakeItFrom.com
Menu (ESC)

5086 Aluminum vs. 5042 Aluminum

Both 5086 aluminum and 5042 aluminum are aluminum alloys. Their average alloy composition is basically identical. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 5086 aluminum and the bottom bar is 5042 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 1.7 to 20
1.1 to 3.4
Fatigue Strength, MPa 88 to 180
97 to 120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 160 to 230
200
Tensile Strength: Ultimate (UTS), MPa 270 to 390
340 to 360
Tensile Strength: Yield (Proof), MPa 110 to 320
270 to 310

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 590
570
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
33
Electrical Conductivity: Equal Weight (Specific), % IACS 100
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.8
8.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.8 to 42
3.6 to 12
Resilience: Unit (Modulus of Resilience), kJ/m3 86 to 770
550 to 720
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 28 to 40
35 to 37
Strength to Weight: Bending, points 34 to 44
40 to 42
Thermal Diffusivity, mm2/s 52
53
Thermal Shock Resistance, points 12 to 17
15 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 96.3
94.2 to 96.8
Chromium (Cr), % 0.050 to 0.25
0 to 0.1
Copper (Cu), % 0 to 0.1
0 to 0.15
Iron (Fe), % 0 to 0.5
0 to 0.35
Magnesium (Mg), % 3.5 to 4.5
3.0 to 4.0
Manganese (Mn), % 0.2 to 0.7
0.2 to 0.5
Silicon (Si), % 0 to 0.4
0 to 0.2
Titanium (Ti), % 0 to 0.15
0 to 0.1
Zinc (Zn), % 0 to 0.25
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15

Comparable Variants