MakeItFrom.com
Menu (ESC)

5086 Aluminum vs. 7021 Aluminum

Both 5086 aluminum and 7021 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 5086 aluminum and the bottom bar is 7021 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
69
Elongation at Break, % 1.7 to 20
9.4
Fatigue Strength, MPa 88 to 180
150
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
26
Shear Strength, MPa 160 to 230
270
Tensile Strength: Ultimate (UTS), MPa 270 to 390
460
Tensile Strength: Yield (Proof), MPa 110 to 320
390

Thermal Properties

Latent Heat of Fusion, J/g 400
380
Maximum Temperature: Mechanical, °C 190
200
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 590
510
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
38
Electrical Conductivity: Equal Weight (Specific), % IACS 100
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.9
Embodied Carbon, kg CO2/kg material 8.8
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.8 to 42
41
Resilience: Unit (Modulus of Resilience), kJ/m3 86 to 770
1110
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
47
Strength to Weight: Axial, points 28 to 40
44
Strength to Weight: Bending, points 34 to 44
45
Thermal Diffusivity, mm2/s 52
59
Thermal Shock Resistance, points 12 to 17
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 96.3
90.7 to 93.7
Chromium (Cr), % 0.050 to 0.25
0 to 0.050
Copper (Cu), % 0 to 0.1
0 to 0.25
Iron (Fe), % 0 to 0.5
0 to 0.4
Magnesium (Mg), % 3.5 to 4.5
1.2 to 1.8
Manganese (Mn), % 0.2 to 0.7
0 to 0.1
Silicon (Si), % 0 to 0.4
0 to 0.25
Titanium (Ti), % 0 to 0.15
0 to 0.1
Zinc (Zn), % 0 to 0.25
5.0 to 6.0
Zirconium (Zr), % 0
0.080 to 0.18
Residuals, % 0 to 0.15
0 to 0.15