MakeItFrom.com
Menu (ESC)

5086 Aluminum vs. 7116 Aluminum

Both 5086 aluminum and 7116 aluminum are aluminum alloys. They have a moderately high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 5086 aluminum and the bottom bar is 7116 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
69
Elongation at Break, % 1.7 to 20
7.8
Fatigue Strength, MPa 88 to 180
160
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 160 to 230
220
Tensile Strength: Ultimate (UTS), MPa 270 to 390
370
Tensile Strength: Yield (Proof), MPa 110 to 320
330

Thermal Properties

Latent Heat of Fusion, J/g 400
380
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 590
520
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
46
Electrical Conductivity: Equal Weight (Specific), % IACS 100
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.9
Embodied Carbon, kg CO2/kg material 8.8
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.8 to 42
28
Resilience: Unit (Modulus of Resilience), kJ/m3 86 to 770
790
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
47
Strength to Weight: Axial, points 28 to 40
35
Strength to Weight: Bending, points 34 to 44
39
Thermal Diffusivity, mm2/s 52
58
Thermal Shock Resistance, points 12 to 17
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 96.3
91.5 to 94.5
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 0 to 0.1
0.5 to 1.1
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.5
0 to 0.3
Magnesium (Mg), % 3.5 to 4.5
0.8 to 1.4
Manganese (Mn), % 0.2 to 0.7
0 to 0.050
Silicon (Si), % 0 to 0.4
0 to 0.15
Titanium (Ti), % 0 to 0.15
0 to 0.050
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.25
4.2 to 5.2
Residuals, % 0 to 0.15
0 to 0.15