MakeItFrom.com
Menu (ESC)

5086 Aluminum vs. 771.0 Aluminum

Both 5086 aluminum and 771.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 5086 aluminum and the bottom bar is 771.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65 to 100
85 to 120
Elastic (Young's, Tensile) Modulus, GPa 68
70
Elongation at Break, % 1.7 to 20
1.7 to 6.5
Fatigue Strength, MPa 88 to 180
92 to 180
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 270 to 390
250 to 370
Tensile Strength: Yield (Proof), MPa 110 to 320
210 to 350

Thermal Properties

Latent Heat of Fusion, J/g 400
380
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 590
620
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 130
140 to 150
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
27
Electrical Conductivity: Equal Weight (Specific), % IACS 100
82

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 8.8
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.8 to 42
4.4 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 86 to 770
310 to 900
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
46
Strength to Weight: Axial, points 28 to 40
23 to 35
Strength to Weight: Bending, points 34 to 44
29 to 39
Thermal Diffusivity, mm2/s 52
54 to 58
Thermal Shock Resistance, points 12 to 17
11 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 96.3
90.5 to 92.5
Chromium (Cr), % 0.050 to 0.25
0.060 to 0.2
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.5
0 to 0.15
Magnesium (Mg), % 3.5 to 4.5
0.8 to 1.0
Manganese (Mn), % 0.2 to 0.7
0 to 0.1
Silicon (Si), % 0 to 0.4
0 to 0.15
Titanium (Ti), % 0 to 0.15
0.1 to 0.2
Zinc (Zn), % 0 to 0.25
6.5 to 7.5
Residuals, % 0 to 0.15
0 to 0.15

Comparable Variants