MakeItFrom.com
Menu (ESC)

5086 Aluminum vs. EN 1.4872 Stainless Steel

5086 aluminum belongs to the aluminum alloys classification, while EN 1.4872 stainless steel belongs to the iron alloys. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5086 aluminum and the bottom bar is EN 1.4872 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65 to 100
270
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 1.7 to 20
28
Fatigue Strength, MPa 88 to 180
410
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Shear Strength, MPa 160 to 230
620
Tensile Strength: Ultimate (UTS), MPa 270 to 390
950
Tensile Strength: Yield (Proof), MPa 110 to 320
560

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Corrosion, °C 65
440
Maximum Temperature: Mechanical, °C 190
1150
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 590
1340
Specific Heat Capacity, J/kg-K 900
490
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
17
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 8.8
3.3
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1180
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.8 to 42
230
Resilience: Unit (Modulus of Resilience), kJ/m3 86 to 770
780
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
26
Strength to Weight: Axial, points 28 to 40
35
Strength to Weight: Bending, points 34 to 44
28
Thermal Diffusivity, mm2/s 52
3.9
Thermal Shock Resistance, points 12 to 17
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 96.3
0
Carbon (C), % 0
0.2 to 0.3
Chromium (Cr), % 0.050 to 0.25
24 to 26
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.5
54.2 to 61.6
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0.2 to 0.7
8.0 to 10
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0