MakeItFrom.com
Menu (ESC)

5086 Aluminum vs. EN AC-45300 Aluminum

Both 5086 aluminum and EN AC-45300 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 5086 aluminum and the bottom bar is EN AC-45300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 65 to 100
94 to 120
Elastic (Young's, Tensile) Modulus, GPa 68
71
Elongation at Break, % 1.7 to 20
1.0 to 2.8
Fatigue Strength, MPa 88 to 180
59 to 72
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 270 to 390
220 to 290
Tensile Strength: Yield (Proof), MPa 110 to 320
150 to 230

Thermal Properties

Latent Heat of Fusion, J/g 400
470
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 590
590
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 130
150
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
36
Electrical Conductivity: Equal Weight (Specific), % IACS 100
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.8
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.8 to 42
2.7 to 5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 86 to 770
160 to 390
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 28 to 40
23 to 29
Strength to Weight: Bending, points 34 to 44
30 to 35
Thermal Diffusivity, mm2/s 52
60
Thermal Shock Resistance, points 12 to 17
10 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 96.3
90.2 to 94.2
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 0 to 0.1
1.0 to 1.5
Iron (Fe), % 0 to 0.5
0 to 0.65
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 3.5 to 4.5
0.35 to 0.65
Manganese (Mn), % 0.2 to 0.7
0 to 0.55
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0 to 0.4
4.5 to 5.5
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.15
0 to 0.25
Zinc (Zn), % 0 to 0.25
0 to 0.15
Residuals, % 0 to 0.15
0 to 0.15