MakeItFrom.com
Menu (ESC)

5086 Aluminum vs. Grade 29 Titanium

5086 aluminum belongs to the aluminum alloys classification, while grade 29 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 5086 aluminum and the bottom bar is grade 29 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 1.7 to 20
6.8 to 11
Fatigue Strength, MPa 88 to 180
460 to 510
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Shear Strength, MPa 160 to 230
550 to 560
Tensile Strength: Ultimate (UTS), MPa 270 to 390
930 to 940
Tensile Strength: Yield (Proof), MPa 110 to 320
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 190
340
Melting Completion (Liquidus), °C 640
1610
Melting Onset (Solidus), °C 590
1560
Specific Heat Capacity, J/kg-K 900
560
Thermal Conductivity, W/m-K 130
7.3
Thermal Expansion, µm/m-K 24
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
4.5
Embodied Carbon, kg CO2/kg material 8.8
39
Embodied Energy, MJ/kg 150
640
Embodied Water, L/kg 1180
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.8 to 42
62 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 86 to 770
3420 to 3540
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 28 to 40
58 to 59
Strength to Weight: Bending, points 34 to 44
47 to 48
Thermal Diffusivity, mm2/s 52
2.9
Thermal Shock Resistance, points 12 to 17
68 to 69

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 96.3
5.5 to 6.5
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 0 to 0.1
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.5
0 to 0.25
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0.2 to 0.7
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 0.4
0
Titanium (Ti), % 0 to 0.15
88 to 90.9
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.4

Comparable Variants