MakeItFrom.com
Menu (ESC)

5086-H28 Aluminum vs. 5252-H28 Aluminum

Both 5086-H28 aluminum and 5252-H28 aluminum are aluminum alloys. Both are furnished in the H28 temper. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 5086-H28 aluminum and the bottom bar is 5252-H28 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 3.4
4.5
Fatigue Strength, MPa 130
100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
25
Shear Strength, MPa 220
160
Tensile Strength: Ultimate (UTS), MPa 390
290
Tensile Strength: Yield (Proof), MPa 320
240

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 590
610
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 130
140
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
34
Electrical Conductivity: Equal Weight (Specific), % IACS 100
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.8
8.7
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1180
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
12
Resilience: Unit (Modulus of Resilience), kJ/m3 770
430
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 40
30
Strength to Weight: Bending, points 44
36
Thermal Diffusivity, mm2/s 52
57
Thermal Shock Resistance, points 17
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93 to 96.3
96.6 to 97.8
Chromium (Cr), % 0.050 to 0.25
0
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.5
0 to 0.1
Magnesium (Mg), % 3.5 to 4.5
2.2 to 2.8
Manganese (Mn), % 0.2 to 0.7
0 to 0.1
Silicon (Si), % 0 to 0.4
0 to 0.080
Titanium (Ti), % 0 to 0.15
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.25
0 to 0.050
Residuals, % 0 to 0.15
0 to 0.1