MakeItFrom.com
Menu (ESC)

5088 Aluminum vs. 296.0 Aluminum

Both 5088 aluminum and 296.0 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5088 aluminum and the bottom bar is 296.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
72
Elongation at Break, % 29
3.2 to 7.1
Fatigue Strength, MPa 180
47 to 70
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
27
Tensile Strength: Ultimate (UTS), MPa 310
260 to 270
Tensile Strength: Yield (Proof), MPa 150
120 to 180

Thermal Properties

Latent Heat of Fusion, J/g 390
420
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 540
540
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 120
130 to 150
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
33 to 37
Electrical Conductivity: Equal Weight (Specific), % IACS 98
99 to 110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 9.0
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
7.6 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 170
110 to 220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
46
Strength to Weight: Axial, points 32
24 to 25
Strength to Weight: Bending, points 38
30 to 31
Thermal Diffusivity, mm2/s 51
51 to 56
Thermal Shock Resistance, points 14
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92.4 to 94.8
89 to 94
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.25
4.0 to 5.0
Iron (Fe), % 0.1 to 0.35
0 to 1.2
Magnesium (Mg), % 4.7 to 5.5
0 to 0.050
Manganese (Mn), % 0.2 to 0.5
0 to 0.35
Nickel (Ni), % 0
0 to 0.35
Silicon (Si), % 0 to 0.2
2.0 to 3.0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0.2 to 0.4
0 to 0.5
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0 to 0.35