MakeItFrom.com
Menu (ESC)

5088 Aluminum vs. 5056 Aluminum

Both 5088 aluminum and 5056 aluminum are aluminum alloys. Their average alloy composition is basically identical. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5088 aluminum and the bottom bar is 5056 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
67
Elongation at Break, % 29
4.9 to 31
Fatigue Strength, MPa 180
140 to 200
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
25
Shear Strength, MPa 200
170 to 240
Tensile Strength: Ultimate (UTS), MPa 310
290 to 460
Tensile Strength: Yield (Proof), MPa 150
150 to 410

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 200
190
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 540
570
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
29
Electrical Conductivity: Equal Weight (Specific), % IACS 98
99

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 9.0
9.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
12 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 170
170 to 1220
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
51
Strength to Weight: Axial, points 32
30 to 48
Strength to Weight: Bending, points 38
36 to 50
Thermal Diffusivity, mm2/s 51
53
Thermal Shock Resistance, points 14
13 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92.4 to 94.8
93 to 95.4
Chromium (Cr), % 0 to 0.15
0.050 to 0.2
Copper (Cu), % 0 to 0.25
0 to 0.1
Iron (Fe), % 0.1 to 0.35
0 to 0.4
Magnesium (Mg), % 4.7 to 5.5
4.5 to 5.6
Manganese (Mn), % 0.2 to 0.5
0.050 to 0.2
Silicon (Si), % 0 to 0.2
0 to 0.3
Zinc (Zn), % 0.2 to 0.4
0 to 0.1
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0 to 0.15