MakeItFrom.com
Menu (ESC)

5088 Aluminum vs. 710.0 Aluminum

Both 5088 aluminum and 710.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5088 aluminum and the bottom bar is 710.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
70
Elongation at Break, % 29
2.2 to 3.6
Fatigue Strength, MPa 180
55 to 110
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 25
26
Shear Strength, MPa 200
180
Tensile Strength: Ultimate (UTS), MPa 310
240 to 250
Tensile Strength: Yield (Proof), MPa 150
160

Thermal Properties

Latent Heat of Fusion, J/g 390
380
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 540
610
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 120
140
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
35
Electrical Conductivity: Equal Weight (Specific), % IACS 98
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 9.0
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
4.9 to 7.9
Resilience: Unit (Modulus of Resilience), kJ/m3 170
180 to 190
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
46
Strength to Weight: Axial, points 32
23
Strength to Weight: Bending, points 38
29
Thermal Diffusivity, mm2/s 51
53
Thermal Shock Resistance, points 14
10 to 11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92.4 to 94.8
90.5 to 93.1
Chromium (Cr), % 0 to 0.15
0
Copper (Cu), % 0 to 0.25
0.35 to 0.65
Iron (Fe), % 0.1 to 0.35
0 to 0.5
Magnesium (Mg), % 4.7 to 5.5
0.6 to 0.8
Manganese (Mn), % 0.2 to 0.5
0 to 0.050
Silicon (Si), % 0 to 0.2
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0.2 to 0.4
6.0 to 7.0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0 to 0.15