MakeItFrom.com
Menu (ESC)

5088 Aluminum vs. EN 2.4608 Nickel

5088 aluminum belongs to the aluminum alloys classification, while EN 2.4608 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5088 aluminum and the bottom bar is EN 2.4608 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 29
34
Fatigue Strength, MPa 180
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
81
Shear Strength, MPa 200
410
Tensile Strength: Ultimate (UTS), MPa 310
620
Tensile Strength: Yield (Proof), MPa 150
270

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 200
1000
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 540
1410
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 120
11
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 98
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 9.0
8.4
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1180
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
170
Resilience: Unit (Modulus of Resilience), kJ/m3 170
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 32
20
Strength to Weight: Bending, points 38
19
Thermal Diffusivity, mm2/s 51
2.9
Thermal Shock Resistance, points 14
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 92.4 to 94.8
0
Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0 to 0.15
24 to 26
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0.1 to 0.35
11.4 to 23.8
Magnesium (Mg), % 4.7 to 5.5
0
Manganese (Mn), % 0.2 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0
44 to 47
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0.7 to 1.5
Sulfur (S), % 0
0 to 0.015
Tungsten (W), % 0
2.5 to 4.0
Zinc (Zn), % 0.2 to 0.4
0
Zirconium (Zr), % 0 to 0.15
0
Residuals, % 0 to 0.15
0