MakeItFrom.com
Menu (ESC)

511.0 Aluminum vs. EN AC-46400 Aluminum

Both 511.0 aluminum and EN AC-46400 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 511.0 aluminum and the bottom bar is EN AC-46400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 50
77 to 120
Elastic (Young's, Tensile) Modulus, GPa 68
72
Elongation at Break, % 3.0
1.1 to 1.7
Fatigue Strength, MPa 55
75 to 85
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
27
Tensile Strength: Ultimate (UTS), MPa 150
170 to 310
Tensile Strength: Yield (Proof), MPa 83
110 to 270

Thermal Properties

Latent Heat of Fusion, J/g 400
520
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
610
Melting Onset (Solidus), °C 590
570
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 140
130
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
33
Electrical Conductivity: Equal Weight (Specific), % IACS 120
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.8
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.7
1.7 to 4.9
Resilience: Unit (Modulus of Resilience), kJ/m3 51
82 to 500
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
52
Strength to Weight: Axial, points 15
18 to 32
Strength to Weight: Bending, points 23
26 to 38
Thermal Diffusivity, mm2/s 59
55
Thermal Shock Resistance, points 6.5
7.8 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.3 to 96.2
85.4 to 90.5
Copper (Cu), % 0 to 0.15
0.8 to 1.3
Iron (Fe), % 0 to 0.5
0 to 0.8
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 3.5 to 4.5
0.25 to 0.65
Manganese (Mn), % 0 to 0.35
0.15 to 0.55
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0.3 to 0.7
8.3 to 9.7
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 0 to 0.15
0 to 0.8
Residuals, % 0 to 0.15
0 to 0.25