MakeItFrom.com
Menu (ESC)

513.0 Aluminum vs. 308.0 Aluminum

Both 513.0 aluminum and 308.0 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 90% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 513.0 aluminum and the bottom bar is 308.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
70
Elastic (Young's, Tensile) Modulus, GPa 68
73
Elongation at Break, % 5.7
2.0
Fatigue Strength, MPa 97
89
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 170
150
Tensile Strength: Ultimate (UTS), MPa 200
190
Tensile Strength: Yield (Proof), MPa 120
110

Thermal Properties

Latent Heat of Fusion, J/g 390
470
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
620
Melting Onset (Solidus), °C 590
540
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 130
140
Thermal Expansion, µm/m-K 24
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
37
Electrical Conductivity: Equal Weight (Specific), % IACS 110
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.9
Embodied Carbon, kg CO2/kg material 8.8
7.7
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1170
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.8
3.3
Resilience: Unit (Modulus of Resilience), kJ/m3 100
83
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
47
Strength to Weight: Axial, points 20
18
Strength to Weight: Bending, points 28
25
Thermal Diffusivity, mm2/s 54
55
Thermal Shock Resistance, points 8.8
9.2

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.9 to 95.1
85.7 to 91
Copper (Cu), % 0 to 0.1
4.0 to 5.0
Iron (Fe), % 0 to 0.4
0 to 1.0
Magnesium (Mg), % 3.5 to 4.5
0 to 0.1
Manganese (Mn), % 0 to 0.3
0 to 0.5
Silicon (Si), % 0 to 0.3
5.0 to 6.0
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 1.4 to 2.2
0 to 1.0
Residuals, % 0 to 0.15
0 to 0.5