MakeItFrom.com
Menu (ESC)

513.0 Aluminum vs. 5086 Aluminum

Both 513.0 aluminum and 5086 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 513.0 aluminum and the bottom bar is 5086 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
65 to 100
Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 5.7
1.7 to 20
Fatigue Strength, MPa 97
88 to 180
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 170
160 to 230
Tensile Strength: Ultimate (UTS), MPa 200
270 to 390
Tensile Strength: Yield (Proof), MPa 120
110 to 320

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 590
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
31
Electrical Conductivity: Equal Weight (Specific), % IACS 110
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.8
8.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.8
5.8 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 100
86 to 770
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 20
28 to 40
Strength to Weight: Bending, points 28
34 to 44
Thermal Diffusivity, mm2/s 54
52
Thermal Shock Resistance, points 8.8
12 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.9 to 95.1
93 to 96.3
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.4
0 to 0.5
Magnesium (Mg), % 3.5 to 4.5
3.5 to 4.5
Manganese (Mn), % 0 to 0.3
0.2 to 0.7
Silicon (Si), % 0 to 0.3
0 to 0.4
Titanium (Ti), % 0 to 0.2
0 to 0.15
Zinc (Zn), % 1.4 to 2.2
0 to 0.25
Residuals, % 0 to 0.15
0 to 0.15