MakeItFrom.com
Menu (ESC)

513.0 Aluminum vs. A360.0 Aluminum

Both 513.0 aluminum and A360.0 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 513.0 aluminum and the bottom bar is A360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
75
Elastic (Young's, Tensile) Modulus, GPa 68
72
Elongation at Break, % 5.7
1.6 to 5.0
Fatigue Strength, MPa 97
82 to 150
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 170
180
Tensile Strength: Ultimate (UTS), MPa 200
180 to 320
Tensile Strength: Yield (Proof), MPa 120
170 to 260

Thermal Properties

Latent Heat of Fusion, J/g 390
530
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
680
Melting Onset (Solidus), °C 590
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
110
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
30
Electrical Conductivity: Equal Weight (Specific), % IACS 110
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.8
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1170
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.8
4.6 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 100
190 to 470
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 50
53
Strength to Weight: Axial, points 20
19 to 34
Strength to Weight: Bending, points 28
27 to 39
Thermal Diffusivity, mm2/s 54
48
Thermal Shock Resistance, points 8.8
8.5 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.9 to 95.1
85.8 to 90.6
Copper (Cu), % 0 to 0.1
0 to 0.6
Iron (Fe), % 0 to 0.4
0 to 1.3
Magnesium (Mg), % 3.5 to 4.5
0.4 to 0.6
Manganese (Mn), % 0 to 0.3
0 to 0.35
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 0 to 0.3
9.0 to 10
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 1.4 to 2.2
0 to 0.5
Residuals, % 0 to 0.15
0 to 0.25