MakeItFrom.com
Menu (ESC)

513.0 Aluminum vs. EN AC-44500 Aluminum

Both 513.0 aluminum and EN AC-44500 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 88% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 513.0 aluminum and the bottom bar is EN AC-44500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
68
Elastic (Young's, Tensile) Modulus, GPa 68
72
Elongation at Break, % 5.7
1.1
Fatigue Strength, MPa 97
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 200
270
Tensile Strength: Yield (Proof), MPa 120
160

Thermal Properties

Latent Heat of Fusion, J/g 390
570
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
590
Melting Onset (Solidus), °C 590
580
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
33
Electrical Conductivity: Equal Weight (Specific), % IACS 110
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.5
Embodied Carbon, kg CO2/kg material 8.8
7.7
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1170
1050

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.8
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 100
180
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 50
55
Strength to Weight: Axial, points 20
29
Strength to Weight: Bending, points 28
36
Thermal Diffusivity, mm2/s 54
57
Thermal Shock Resistance, points 8.8
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.9 to 95.1
83.7 to 89.5
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0 to 0.4
0 to 1.0
Magnesium (Mg), % 3.5 to 4.5
0 to 0.4
Manganese (Mn), % 0 to 0.3
0 to 0.55
Silicon (Si), % 0 to 0.3
10.5 to 13.5
Titanium (Ti), % 0 to 0.2
0 to 0.15
Zinc (Zn), % 1.4 to 2.2
0 to 0.3
Residuals, % 0 to 0.15
0 to 0.25