MakeItFrom.com
Menu (ESC)

514.0 Aluminum vs. S32101 Stainless Steel

514.0 aluminum belongs to the aluminum alloys classification, while S32101 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 514.0 aluminum and the bottom bar is S32101 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 50
260
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 7.3
34
Fatigue Strength, MPa 48
400
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
78
Shear Strength, MPa 140
490
Tensile Strength: Ultimate (UTS), MPa 180
740
Tensile Strength: Yield (Proof), MPa 74
500

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 610
1370
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
15
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.9
2.6
Embodied Energy, MJ/kg 150
38
Embodied Water, L/kg 1180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11
230
Resilience: Unit (Modulus of Resilience), kJ/m3 41
640
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 19
27
Strength to Weight: Bending, points 26
24
Thermal Diffusivity, mm2/s 57
4.0
Thermal Shock Resistance, points 7.9
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.6 to 96.5
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
21 to 22
Copper (Cu), % 0 to 0.15
0.1 to 0.8
Iron (Fe), % 0 to 0.5
67.3 to 73.3
Magnesium (Mg), % 3.5 to 4.5
0
Manganese (Mn), % 0 to 0.35
4.0 to 6.0
Molybdenum (Mo), % 0
0.1 to 0.8
Nickel (Ni), % 0
1.4 to 1.7
Nitrogen (N), % 0
0.2 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0