MakeItFrom.com
Menu (ESC)

515.0 Aluminum vs. EN AC-43300 Aluminum

Both 515.0 aluminum and EN AC-43300 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 22 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is 515.0 aluminum and the bottom bar is EN AC-43300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
71
Elongation at Break, % 10
3.4 to 6.7
Fatigue Strength, MPa 130
76 to 77
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 280
280 to 290

Thermal Properties

Latent Heat of Fusion, J/g 470
540
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 620
600
Melting Onset (Solidus), °C 620
590
Specific Heat Capacity, J/kg-K 900
910
Thermal Expansion, µm/m-K 23
22

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.5
Embodied Carbon, kg CO2/kg material 8.4
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1120
1080

Common Calculations

Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 52
54
Strength to Weight: Axial, points 30
31 to 32
Strength to Weight: Bending, points 36
37 to 38
Thermal Shock Resistance, points 13
13 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.6 to 96.6
88.9 to 90.8
Copper (Cu), % 0 to 0.2
0 to 0.050
Iron (Fe), % 0 to 1.3
0 to 0.19
Magnesium (Mg), % 2.5 to 4.0
0.25 to 0.45
Manganese (Mn), % 0.4 to 0.6
0 to 0.1
Silicon (Si), % 0.5 to 10
9.0 to 10
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.1
0 to 0.070
Residuals, % 0 to 0.15
0 to 0.1