MakeItFrom.com
Menu (ESC)

5154 Aluminum vs. EN AC-51500 Aluminum

Both 5154 aluminum and EN AC-51500 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 5154 aluminum and the bottom bar is EN AC-51500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
68
Elongation at Break, % 3.4 to 20
5.6
Fatigue Strength, MPa 100 to 160
120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 240 to 360
280
Tensile Strength: Yield (Proof), MPa 94 to 270
160

Thermal Properties

Latent Heat of Fusion, J/g 400
430
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 590
590
Specific Heat Capacity, J/kg-K 900
910
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
26
Electrical Conductivity: Equal Weight (Specific), % IACS 110
88

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.8
9.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 39
13
Resilience: Unit (Modulus of Resilience), kJ/m3 64 to 540
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
52
Strength to Weight: Axial, points 25 to 37
29
Strength to Weight: Bending, points 32 to 42
36
Thermal Diffusivity, mm2/s 52
49
Thermal Shock Resistance, points 10 to 16
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.4 to 96.8
89.8 to 93.1
Chromium (Cr), % 0.15 to 0.35
0
Copper (Cu), % 0 to 0.1
0 to 0.050
Iron (Fe), % 0 to 0.4
0 to 0.25
Magnesium (Mg), % 3.1 to 3.9
4.7 to 6.0
Manganese (Mn), % 0 to 0.1
0.4 to 0.8
Silicon (Si), % 0 to 0.25
1.8 to 2.6
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 0 to 0.2
0 to 0.070
Residuals, % 0 to 0.15
0 to 0.15