MakeItFrom.com
Menu (ESC)

5154A Aluminum vs. 8011A Aluminum

Both 5154A aluminum and 8011A aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5154A aluminum and the bottom bar is 8011A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 58 to 100
25 to 50
Elastic (Young's, Tensile) Modulus, GPa 68
69
Elongation at Break, % 1.1 to 19
1.7 to 28
Fatigue Strength, MPa 83 to 160
33 to 76
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 230 to 370
100 to 180
Tensile Strength: Yield (Proof), MPa 96 to 320
34 to 170

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 650
650
Melting Onset (Solidus), °C 600
630
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
210
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
56
Electrical Conductivity: Equal Weight (Specific), % IACS 110
180

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.0
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.8
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 36
3.0 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 760
8.2 to 200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
50
Strength to Weight: Axial, points 24 to 38
11 to 18
Strength to Weight: Bending, points 31 to 43
18 to 26
Thermal Diffusivity, mm2/s 53
86
Thermal Shock Resistance, points 10 to 16
4.6 to 8.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.7 to 96.9
97.5 to 99.1
Chromium (Cr), % 0 to 0.25
0 to 0.1
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.5
0.5 to 1.0
Magnesium (Mg), % 3.1 to 3.9
0 to 0.1
Manganese (Mn), % 0 to 0.5
0 to 0.1
Silicon (Si), % 0 to 0.5
0.4 to 0.8
Titanium (Ti), % 0 to 0.2
0 to 0.050
Zinc (Zn), % 0 to 0.2
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.15

Comparable Variants