MakeItFrom.com
Menu (ESC)

5154A Aluminum vs. EN AC-46600 Aluminum

Both 5154A aluminum and EN AC-46600 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5154A aluminum and the bottom bar is EN AC-46600 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 58 to 100
77
Elastic (Young's, Tensile) Modulus, GPa 68
72
Elongation at Break, % 1.1 to 19
1.1
Fatigue Strength, MPa 83 to 160
75
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 230 to 370
180
Tensile Strength: Yield (Proof), MPa 96 to 320
110

Thermal Properties

Latent Heat of Fusion, J/g 400
490
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 650
620
Melting Onset (Solidus), °C 600
560
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
29
Electrical Conductivity: Equal Weight (Specific), % IACS 110
94

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.8
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.0 to 36
1.7
Resilience: Unit (Modulus of Resilience), kJ/m3 68 to 760
81
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
50
Strength to Weight: Axial, points 24 to 38
18
Strength to Weight: Bending, points 31 to 43
25
Thermal Diffusivity, mm2/s 53
51
Thermal Shock Resistance, points 10 to 16
8.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.7 to 96.9
85.6 to 92.4
Chromium (Cr), % 0 to 0.25
0
Copper (Cu), % 0 to 0.1
1.5 to 2.5
Iron (Fe), % 0 to 0.5
0 to 0.8
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 3.1 to 3.9
0 to 0.35
Manganese (Mn), % 0 to 0.5
0.15 to 0.65
Nickel (Ni), % 0
0 to 0.35
Silicon (Si), % 0 to 0.5
6.0 to 8.0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 0 to 0.2
0 to 1.0
Residuals, % 0 to 0.15
0 to 0.15