MakeItFrom.com
Menu (ESC)

518.0 Aluminum vs. EN AC-21200 Aluminum

Both 518.0 aluminum and EN AC-21200 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 518.0 aluminum and the bottom bar is EN AC-21200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
120 to 130
Elastic (Young's, Tensile) Modulus, GPa 67
71
Elongation at Break, % 5.0
3.9 to 6.2
Fatigue Strength, MPa 140
110 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
27
Tensile Strength: Ultimate (UTS), MPa 310
410 to 440
Tensile Strength: Yield (Proof), MPa 190
270 to 360

Thermal Properties

Latent Heat of Fusion, J/g 390
390
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 620
660
Melting Onset (Solidus), °C 560
550
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 98
130
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
34
Electrical Conductivity: Equal Weight (Specific), % IACS 81
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 9.4
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1160
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
16 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 270
500 to 930
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
46
Strength to Weight: Axial, points 32
38 to 40
Strength to Weight: Bending, points 38
41 to 43
Thermal Diffusivity, mm2/s 40
49
Thermal Shock Resistance, points 14
18 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 88.1 to 92.5
93.3 to 95.7
Copper (Cu), % 0 to 0.25
4.0 to 5.0
Iron (Fe), % 0 to 1.8
0 to 0.2
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 7.5 to 8.5
0.15 to 0.5
Manganese (Mn), % 0 to 0.35
0.2 to 0.5
Nickel (Ni), % 0 to 0.15
0 to 0.050
Silicon (Si), % 0 to 0.35
0 to 0.1
Tin (Sn), % 0 to 0.15
0 to 0.030
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.15
0 to 0.1
Residuals, % 0 to 0.25
0 to 0.1