MakeItFrom.com
Menu (ESC)

518.0 Aluminum vs. N08535 Stainless Steel

518.0 aluminum belongs to the aluminum alloys classification, while N08535 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 518.0 aluminum and the bottom bar is N08535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 5.0
46
Fatigue Strength, MPa 140
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
80
Shear Strength, MPa 200
400
Tensile Strength: Ultimate (UTS), MPa 310
570
Tensile Strength: Yield (Proof), MPa 190
240

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 620
1420
Melting Onset (Solidus), °C 560
1370
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 98
13
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 81
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
8.1
Embodied Carbon, kg CO2/kg material 9.4
6.3
Embodied Energy, MJ/kg 150
87
Embodied Water, L/kg 1160
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14
210
Resilience: Unit (Modulus of Resilience), kJ/m3 270
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 32
20
Strength to Weight: Bending, points 38
19
Thermal Diffusivity, mm2/s 40
3.3
Thermal Shock Resistance, points 14
13

Alloy Composition

Aluminum (Al), % 88.1 to 92.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 27
Copper (Cu), % 0 to 0.25
0 to 1.5
Iron (Fe), % 0 to 1.8
29.4 to 44.5
Magnesium (Mg), % 7.5 to 8.5
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0 to 0.15
29 to 36.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.35
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.25
0