MakeItFrom.com
Menu (ESC)

5182 Aluminum vs. 204.0 Aluminum

Both 5182 aluminum and 204.0 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 5182 aluminum and the bottom bar is 204.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
71
Elongation at Break, % 1.1 to 12
5.7 to 7.8
Fatigue Strength, MPa 100 to 130
63 to 77
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
27
Tensile Strength: Ultimate (UTS), MPa 280 to 420
230 to 340
Tensile Strength: Yield (Proof), MPa 130 to 360
180 to 220

Thermal Properties

Latent Heat of Fusion, J/g 390
390
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 590
580
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 24
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
29 to 34
Electrical Conductivity: Equal Weight (Specific), % IACS 94
87 to 100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 8.9
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6 to 49
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 950
220 to 350
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
46
Strength to Weight: Axial, points 29 to 44
21 to 31
Strength to Weight: Bending, points 36 to 47
28 to 36
Thermal Diffusivity, mm2/s 53
46
Thermal Shock Resistance, points 12 to 19
12 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.2 to 95.8
93.4 to 95.5
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.15
4.2 to 5.0
Iron (Fe), % 0 to 0.35
0 to 0.35
Magnesium (Mg), % 4.0 to 5.0
0.15 to 0.35
Manganese (Mn), % 0.2 to 0.5
0 to 0.1
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0 to 0.2
0 to 0.2
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.1
0.15 to 0.3
Zinc (Zn), % 0 to 0.25
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.15