MakeItFrom.com
Menu (ESC)

5182 Aluminum vs. 4343 Aluminum

Both 5182 aluminum and 4343 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5182 aluminum and the bottom bar is 4343 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
71
Elongation at Break, % 1.1 to 12
4.4
Fatigue Strength, MPa 100 to 130
45
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
27
Shear Strength, MPa 170 to 240
64
Tensile Strength: Ultimate (UTS), MPa 280 to 420
110
Tensile Strength: Yield (Proof), MPa 130 to 360
62

Thermal Properties

Latent Heat of Fusion, J/g 390
510
Maximum Temperature: Mechanical, °C 180
160
Melting Completion (Liquidus), °C 640
620
Melting Onset (Solidus), °C 590
580
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 130
180
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
44
Electrical Conductivity: Equal Weight (Specific), % IACS 94
150

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 8.9
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6 to 49
4.1
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 950
27
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
53
Strength to Weight: Axial, points 29 to 44
12
Strength to Weight: Bending, points 36 to 47
20
Thermal Diffusivity, mm2/s 53
77
Thermal Shock Resistance, points 12 to 19
5.2

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.2 to 95.8
90.3 to 93.2
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.15
0 to 0.25
Iron (Fe), % 0 to 0.35
0 to 0.8
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0.2 to 0.5
0 to 0.1
Silicon (Si), % 0 to 0.2
6.8 to 8.2
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0 to 0.2
Residuals, % 0 to 0.15
0 to 0.15