MakeItFrom.com
Menu (ESC)

5182 Aluminum vs. A206.0 Aluminum

Both 5182 aluminum and A206.0 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5182 aluminum and the bottom bar is A206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
70
Elongation at Break, % 1.1 to 12
4.2 to 10
Fatigue Strength, MPa 100 to 130
90 to 180
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
26
Shear Strength, MPa 170 to 240
260
Tensile Strength: Ultimate (UTS), MPa 280 to 420
390 to 440
Tensile Strength: Yield (Proof), MPa 130 to 360
250 to 380

Thermal Properties

Latent Heat of Fusion, J/g 390
390
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
670
Melting Onset (Solidus), °C 590
550
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
30
Electrical Conductivity: Equal Weight (Specific), % IACS 94
90

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 8.9
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6 to 49
16 to 37
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 950
440 to 1000
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
46
Strength to Weight: Axial, points 29 to 44
36 to 41
Strength to Weight: Bending, points 36 to 47
39 to 43
Thermal Diffusivity, mm2/s 53
48
Thermal Shock Resistance, points 12 to 19
17 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.2 to 95.8
93.9 to 95.7
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.15
4.2 to 5.0
Iron (Fe), % 0 to 0.35
0 to 0.1
Magnesium (Mg), % 4.0 to 5.0
0 to 0.15
Manganese (Mn), % 0.2 to 0.5
0 to 0.2
Nickel (Ni), % 0
0 to 0.050
Silicon (Si), % 0 to 0.2
0 to 0.050
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.1
0.15 to 0.3
Zinc (Zn), % 0 to 0.25
0 to 0.1
Residuals, % 0 to 0.15
0 to 0.15