MakeItFrom.com
Menu (ESC)

5182 Aluminum vs. B390.0 Aluminum

Both 5182 aluminum and B390.0 aluminum are aluminum alloys. They have 78% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5182 aluminum and the bottom bar is B390.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
76
Elongation at Break, % 1.1 to 12
0.88
Fatigue Strength, MPa 100 to 130
170
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
29
Tensile Strength: Ultimate (UTS), MPa 280 to 420
320
Tensile Strength: Yield (Proof), MPa 130 to 360
250

Thermal Properties

Latent Heat of Fusion, J/g 390
640
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
580
Melting Onset (Solidus), °C 590
580
Specific Heat Capacity, J/kg-K 900
880
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 24
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
27
Electrical Conductivity: Equal Weight (Specific), % IACS 94
88

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
2.8
Embodied Carbon, kg CO2/kg material 8.9
7.3
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1180
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6 to 49
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 950
410
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
51
Strength to Weight: Axial, points 29 to 44
32
Strength to Weight: Bending, points 36 to 47
38
Thermal Diffusivity, mm2/s 53
55
Thermal Shock Resistance, points 12 to 19
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.2 to 95.8
72.7 to 79.6
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.15
4.0 to 5.0
Iron (Fe), % 0 to 0.35
0 to 1.3
Magnesium (Mg), % 4.0 to 5.0
0.45 to 0.65
Manganese (Mn), % 0.2 to 0.5
0 to 0.5
Nickel (Ni), % 0
0 to 0.1
Silicon (Si), % 0 to 0.2
16 to 18
Titanium (Ti), % 0 to 0.1
0 to 0.1
Zinc (Zn), % 0 to 0.25
0 to 1.5
Residuals, % 0 to 0.15
0 to 0.2