MakeItFrom.com
Menu (ESC)

5182 Aluminum vs. EN AC-46100 Aluminum

Both 5182 aluminum and EN AC-46100 aluminum are aluminum alloys. They have 86% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5182 aluminum and the bottom bar is EN AC-46100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
73
Elongation at Break, % 1.1 to 12
1.0
Fatigue Strength, MPa 100 to 130
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
28
Tensile Strength: Ultimate (UTS), MPa 280 to 420
270
Tensile Strength: Yield (Proof), MPa 130 to 360
160

Thermal Properties

Latent Heat of Fusion, J/g 390
550
Maximum Temperature: Mechanical, °C 180
180
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 590
540
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 130
110
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
28
Electrical Conductivity: Equal Weight (Specific), % IACS 94
90

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 8.9
7.6
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6 to 49
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 950
170
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
51
Strength to Weight: Axial, points 29 to 44
27
Strength to Weight: Bending, points 36 to 47
34
Thermal Diffusivity, mm2/s 53
44
Thermal Shock Resistance, points 12 to 19
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.2 to 95.8
80.4 to 88.5
Chromium (Cr), % 0 to 0.1
0 to 0.15
Copper (Cu), % 0 to 0.15
1.5 to 2.5
Iron (Fe), % 0 to 0.35
0 to 1.1
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 4.0 to 5.0
0 to 0.3
Manganese (Mn), % 0.2 to 0.5
0 to 0.55
Nickel (Ni), % 0
0 to 0.45
Silicon (Si), % 0 to 0.2
10 to 12
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.1
0 to 0.25
Zinc (Zn), % 0 to 0.25
0 to 1.7
Residuals, % 0 to 0.15
0 to 0.25