MakeItFrom.com
Menu (ESC)

5182 Aluminum vs. EN-MC21210 Magnesium

5182 aluminum belongs to the aluminum alloys classification, while EN-MC21210 magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5182 aluminum and the bottom bar is EN-MC21210 magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
44
Elongation at Break, % 1.1 to 12
14
Fatigue Strength, MPa 100 to 130
70
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
17
Shear Strength, MPa 170 to 240
110
Tensile Strength: Ultimate (UTS), MPa 280 to 420
190
Tensile Strength: Yield (Proof), MPa 130 to 360
90

Thermal Properties

Latent Heat of Fusion, J/g 390
350
Maximum Temperature: Mechanical, °C 180
100
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 590
570
Specific Heat Capacity, J/kg-K 900
1000
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 24
27

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
24
Electrical Conductivity: Equal Weight (Specific), % IACS 94
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
1.6
Embodied Carbon, kg CO2/kg material 8.9
24
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1180
980

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6 to 49
22
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 950
92
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
72
Strength to Weight: Axial, points 29 to 44
32
Strength to Weight: Bending, points 36 to 47
44
Thermal Diffusivity, mm2/s 53
76
Thermal Shock Resistance, points 12 to 19
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.2 to 95.8
1.6 to 2.6
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.15
0 to 0.010
Iron (Fe), % 0 to 0.35
0 to 0.0050
Magnesium (Mg), % 4.0 to 5.0
96.3 to 98.3
Manganese (Mn), % 0.2 to 0.5
0.1 to 0.7
Nickel (Ni), % 0
0 to 0.0020
Silicon (Si), % 0 to 0.2
0 to 0.1
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
0 to 0.2
Residuals, % 0 to 0.15
0 to 0.010