MakeItFrom.com
Menu (ESC)

5182 Aluminum vs. C69700 Brass

5182 aluminum belongs to the aluminum alloys classification, while C69700 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5182 aluminum and the bottom bar is C69700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 1.1 to 12
25
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 25
41
Shear Strength, MPa 170 to 240
300
Tensile Strength: Ultimate (UTS), MPa 280 to 420
470
Tensile Strength: Yield (Proof), MPa 130 to 360
230

Thermal Properties

Latent Heat of Fusion, J/g 390
240
Maximum Temperature: Mechanical, °C 180
160
Melting Completion (Liquidus), °C 640
930
Melting Onset (Solidus), °C 590
880
Specific Heat Capacity, J/kg-K 900
400
Thermal Conductivity, W/m-K 130
43
Thermal Expansion, µm/m-K 24
19

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
26
Density, g/cm3 2.7
8.3
Embodied Carbon, kg CO2/kg material 8.9
2.7
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6 to 49
99
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 950
250
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 29 to 44
16
Strength to Weight: Bending, points 36 to 47
16
Thermal Diffusivity, mm2/s 53
13
Thermal Shock Resistance, points 12 to 19
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.2 to 95.8
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0 to 0.15
75 to 80
Iron (Fe), % 0 to 0.35
0 to 0.2
Lead (Pb), % 0
0.5 to 1.5
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0.2 to 0.5
0 to 0.4
Silicon (Si), % 0 to 0.2
2.5 to 3.5
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.25
13.9 to 22
Residuals, % 0 to 0.15
0 to 0.5