MakeItFrom.com
Menu (ESC)

5182 Aluminum vs. N06035 Nickel

5182 aluminum belongs to the aluminum alloys classification, while N06035 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5182 aluminum and the bottom bar is N06035 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 1.1 to 12
34
Fatigue Strength, MPa 100 to 130
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
84
Shear Strength, MPa 170 to 240
440
Tensile Strength: Ultimate (UTS), MPa 280 to 420
660
Tensile Strength: Yield (Proof), MPa 130 to 360
270

Thermal Properties

Latent Heat of Fusion, J/g 390
340
Maximum Temperature: Mechanical, °C 180
1030
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 590
1390
Specific Heat Capacity, J/kg-K 900
450
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.7
8.4
Embodied Carbon, kg CO2/kg material 8.9
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1180
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6 to 49
180
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 950
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 29 to 44
22
Strength to Weight: Bending, points 36 to 47
20
Thermal Shock Resistance, points 12 to 19
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.2 to 95.8
0 to 0.4
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.1
32.3 to 34.3
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.15
0 to 0.3
Iron (Fe), % 0 to 0.35
0 to 2.0
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0.2 to 0.5
0 to 0.5
Molybdenum (Mo), % 0
7.6 to 9.0
Nickel (Ni), % 0
51.1 to 60.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0 to 0.6
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
0 to 0.6
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0