MakeItFrom.com
Menu (ESC)

5182 Aluminum vs. R30816 Cobalt

5182 aluminum belongs to the aluminum alloys classification, while R30816 cobalt belongs to the cobalt alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5182 aluminum and the bottom bar is R30816 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 1.1 to 12
23
Fatigue Strength, MPa 100 to 130
250
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 25
81
Tensile Strength: Ultimate (UTS), MPa 280 to 420
1020
Tensile Strength: Yield (Proof), MPa 130 to 360
460

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Melting Completion (Liquidus), °C 640
1540
Melting Onset (Solidus), °C 590
1460
Specific Heat Capacity, J/kg-K 900
420
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Density, g/cm3 2.7
9.1
Embodied Carbon, kg CO2/kg material 8.9
20
Embodied Energy, MJ/kg 150
320
Embodied Water, L/kg 1180
440

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.6 to 49
190
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 950
510
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
22
Strength to Weight: Axial, points 29 to 44
31
Strength to Weight: Bending, points 36 to 47
25
Thermal Diffusivity, mm2/s 53
3.3
Thermal Shock Resistance, points 12 to 19
28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 93.2 to 95.8
0
Carbon (C), % 0
0.32 to 0.42
Chromium (Cr), % 0 to 0.1
19 to 21
Cobalt (Co), % 0
40 to 49.8
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.35
0 to 5.0
Magnesium (Mg), % 4.0 to 5.0
0
Manganese (Mn), % 0.2 to 0.5
1.0 to 2.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0
19 to 21
Niobium (Nb), % 0
3.5 to 4.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
3.5 to 4.5
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0