MakeItFrom.com
Menu (ESC)

520.0 Aluminum vs. S21460 Stainless Steel

520.0 aluminum belongs to the aluminum alloys classification, while S21460 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 520.0 aluminum and the bottom bar is S21460 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
250
Elastic (Young's, Tensile) Modulus, GPa 66
200
Elongation at Break, % 14
46
Fatigue Strength, MPa 55
390
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
77
Shear Strength, MPa 230
580
Tensile Strength: Ultimate (UTS), MPa 330
830
Tensile Strength: Yield (Proof), MPa 170
430

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 170
920
Melting Completion (Liquidus), °C 600
1380
Melting Onset (Solidus), °C 480
1330
Specific Heat Capacity, J/kg-K 910
480
Thermal Expansion, µm/m-K 25
18

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
14
Density, g/cm3 2.6
7.6
Embodied Carbon, kg CO2/kg material 9.8
3.0
Embodied Energy, MJ/kg 160
43
Embodied Water, L/kg 1170
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39
320
Resilience: Unit (Modulus of Resilience), kJ/m3 230
460
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 52
25
Strength to Weight: Axial, points 35
30
Strength to Weight: Bending, points 41
26
Thermal Shock Resistance, points 14
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 87.9 to 90.5
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 0 to 0.3
57.3 to 63.7
Magnesium (Mg), % 9.5 to 10.6
0
Manganese (Mn), % 0 to 0.15
14 to 16
Nickel (Ni), % 0
5.0 to 6.0
Nitrogen (N), % 0
0.35 to 0.5
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0