MakeItFrom.com
Menu (ESC)

520.0 Aluminum vs. S31260 Stainless Steel

520.0 aluminum belongs to the aluminum alloys classification, while S31260 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 520.0 aluminum and the bottom bar is S31260 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
260
Elastic (Young's, Tensile) Modulus, GPa 66
200
Elongation at Break, % 14
23
Fatigue Strength, MPa 55
370
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 25
80
Shear Strength, MPa 230
500
Tensile Strength: Ultimate (UTS), MPa 330
790
Tensile Strength: Yield (Proof), MPa 170
540

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 480
1400
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 87
16
Thermal Expansion, µm/m-K 25
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 21
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 72
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
20
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 9.8
3.9
Embodied Energy, MJ/kg 160
53
Embodied Water, L/kg 1170
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39
160
Resilience: Unit (Modulus of Resilience), kJ/m3 230
720
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 52
25
Strength to Weight: Axial, points 35
28
Strength to Weight: Bending, points 41
24
Thermal Diffusivity, mm2/s 37
4.3
Thermal Shock Resistance, points 14
22

Alloy Composition

Aluminum (Al), % 87.9 to 90.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.25
0.2 to 0.8
Iron (Fe), % 0 to 0.3
59.6 to 67.6
Magnesium (Mg), % 9.5 to 10.6
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
5.5 to 7.5
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.25
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
0.1 to 0.5
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0