MakeItFrom.com
Menu (ESC)

5251 Aluminum vs. EN 1.3975 Stainless Steel

5251 aluminum belongs to the aluminum alloys classification, while EN 1.3975 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5251 aluminum and the bottom bar is EN 1.3975 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 44 to 79
190
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 2.0 to 19
27
Fatigue Strength, MPa 59 to 110
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 180 to 280
660
Tensile Strength: Yield (Proof), MPa 67 to 250
320

Thermal Properties

Latent Heat of Fusion, J/g 400
340
Maximum Temperature: Mechanical, °C 180
910
Melting Completion (Liquidus), °C 650
1360
Melting Onset (Solidus), °C 610
1320
Specific Heat Capacity, J/kg-K 900
500
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.7
7.5
Embodied Carbon, kg CO2/kg material 8.5
3.3
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.4 to 27
150
Resilience: Unit (Modulus of Resilience), kJ/m3 33 to 450
270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
26
Strength to Weight: Axial, points 18 to 29
24
Strength to Weight: Bending, points 26 to 35
22
Thermal Shock Resistance, points 7.9 to 13
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 95.5 to 98.2
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.15
16 to 18
Copper (Cu), % 0 to 0.15
0
Iron (Fe), % 0 to 0.5
58.2 to 65.4
Magnesium (Mg), % 1.7 to 2.4
0
Manganese (Mn), % 0.1 to 0.5
7.0 to 9.0
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0
8.0 to 9.0
Nitrogen (N), % 0
0.080 to 0.18
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.4
3.5 to 4.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.15
0
Residuals, % 0 to 0.15
0