MakeItFrom.com
Menu (ESC)

5252 Aluminum vs. EN AC-44000 Aluminum

Both 5252 aluminum and EN AC-44000 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 5252 aluminum and the bottom bar is EN AC-44000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68 to 75
51
Elastic (Young's, Tensile) Modulus, GPa 68
71
Elongation at Break, % 4.5 to 11
7.3
Fatigue Strength, MPa 100 to 110
64
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
27
Tensile Strength: Ultimate (UTS), MPa 230 to 290
180
Tensile Strength: Yield (Proof), MPa 170 to 240
86

Thermal Properties

Latent Heat of Fusion, J/g 400
560
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 650
590
Melting Onset (Solidus), °C 610
590
Specific Heat Capacity, J/kg-K 910
910
Thermal Conductivity, W/m-K 140
140
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
36
Electrical Conductivity: Equal Weight (Specific), % IACS 120
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.5
Embodied Carbon, kg CO2/kg material 8.7
7.8
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1190
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
11
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
51
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 51
55
Strength to Weight: Axial, points 23 to 30
20
Strength to Weight: Bending, points 31 to 36
28
Thermal Diffusivity, mm2/s 57
61
Thermal Shock Resistance, points 10 to 13
8.4

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 96.6 to 97.8
87.1 to 90
Copper (Cu), % 0 to 0.1
0 to 0.050
Iron (Fe), % 0 to 0.1
0 to 0.19
Magnesium (Mg), % 2.2 to 2.8
0 to 0.45
Manganese (Mn), % 0 to 0.1
0 to 0.1
Silicon (Si), % 0 to 0.080
10 to 11.8
Titanium (Ti), % 0
0 to 0.15
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0 to 0.070
Residuals, % 0 to 0.1
0 to 0.1