MakeItFrom.com
Menu (ESC)

5252 Aluminum vs. C93800 Bronze

5252 aluminum belongs to the aluminum alloys classification, while C93800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5252 aluminum and the bottom bar is C93800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
96
Elongation at Break, % 4.5 to 11
9.7
Poisson's Ratio 0.33
0.35
Shear Modulus, GPa 25
35
Tensile Strength: Ultimate (UTS), MPa 230 to 290
200
Tensile Strength: Yield (Proof), MPa 170 to 240
120

Thermal Properties

Latent Heat of Fusion, J/g 400
170
Maximum Temperature: Mechanical, °C 180
140
Melting Completion (Liquidus), °C 650
940
Melting Onset (Solidus), °C 610
850
Specific Heat Capacity, J/kg-K 910
340
Thermal Conductivity, W/m-K 140
52
Thermal Expansion, µm/m-K 24
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
11
Electrical Conductivity: Equal Weight (Specific), % IACS 120
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.7
9.1
Embodied Carbon, kg CO2/kg material 8.7
3.2
Embodied Energy, MJ/kg 160
51
Embodied Water, L/kg 1190
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
17
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
70
Stiffness to Weight: Axial, points 14
5.9
Stiffness to Weight: Bending, points 51
17
Strength to Weight: Axial, points 23 to 30
6.1
Strength to Weight: Bending, points 31 to 36
8.4
Thermal Diffusivity, mm2/s 57
17
Thermal Shock Resistance, points 10 to 13
8.1

Alloy Composition

Aluminum (Al), % 96.6 to 97.8
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Copper (Cu), % 0 to 0.1
75 to 79
Iron (Fe), % 0 to 0.1
0 to 0.15
Lead (Pb), % 0
13 to 16
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.080
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
6.3 to 7.5
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0 to 0.8
Residuals, % 0
0 to 1.0