MakeItFrom.com
Menu (ESC)

5252 Aluminum vs. S28200 Stainless Steel

5252 aluminum belongs to the aluminum alloys classification, while S28200 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 5252 aluminum and the bottom bar is S28200 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68 to 75
260
Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.5 to 11
45
Fatigue Strength, MPa 100 to 110
430
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
77
Shear Strength, MPa 140 to 160
610
Tensile Strength: Ultimate (UTS), MPa 230 to 290
870
Tensile Strength: Yield (Proof), MPa 170 to 240
460

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 180
900
Melting Completion (Liquidus), °C 650
1380
Melting Onset (Solidus), °C 610
1330
Specific Heat Capacity, J/kg-K 910
480
Thermal Expansion, µm/m-K 24
18

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 8.7
2.8
Embodied Energy, MJ/kg 160
41
Embodied Water, L/kg 1190
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 23
330
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 430
540
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
26
Strength to Weight: Axial, points 23 to 30
32
Strength to Weight: Bending, points 31 to 36
27
Thermal Shock Resistance, points 10 to 13
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 96.6 to 97.8
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0 to 0.1
0.75 to 1.3
Iron (Fe), % 0 to 0.1
57.7 to 64.1
Magnesium (Mg), % 2.2 to 2.8
0
Manganese (Mn), % 0 to 0.1
17 to 19
Molybdenum (Mo), % 0
0.75 to 1.3
Nitrogen (N), % 0
0.4 to 0.6
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.080
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.1
0