MakeItFrom.com
Menu (ESC)

5254 Aluminum vs. 296.0 Aluminum

Both 5254 aluminum and 296.0 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 5254 aluminum and the bottom bar is 296.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
72
Elongation at Break, % 3.4 to 22
3.2 to 7.1
Fatigue Strength, MPa 110 to 160
47 to 70
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 240 to 350
260 to 270
Tensile Strength: Yield (Proof), MPa 100 to 270
120 to 180

Thermal Properties

Latent Heat of Fusion, J/g 400
420
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 590
540
Specific Heat Capacity, J/kg-K 900
870
Thermal Conductivity, W/m-K 130
130 to 150
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
33 to 37
Electrical Conductivity: Equal Weight (Specific), % IACS 110
99 to 110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.7
3.0
Embodied Carbon, kg CO2/kg material 8.8
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 41
7.6 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 73 to 550
110 to 220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
46
Strength to Weight: Axial, points 25 to 37
24 to 25
Strength to Weight: Bending, points 32 to 41
30 to 31
Thermal Diffusivity, mm2/s 52
51 to 56
Thermal Shock Resistance, points 10 to 16
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 94.4 to 96.8
89 to 94
Chromium (Cr), % 0.15 to 0.35
0
Copper (Cu), % 0 to 0.050
4.0 to 5.0
Iron (Fe), % 0 to 0.45
0 to 1.2
Magnesium (Mg), % 3.1 to 3.9
0 to 0.050
Manganese (Mn), % 0 to 0.010
0 to 0.35
Nickel (Ni), % 0
0 to 0.35
Silicon (Si), % 0 to 0.45
2.0 to 3.0
Titanium (Ti), % 0 to 0.050
0 to 0.25
Zinc (Zn), % 0 to 0.2
0 to 0.5
Residuals, % 0 to 0.15
0 to 0.35