MakeItFrom.com
Menu (ESC)

535.0 Aluminum vs. 6023 Aluminum

Both 535.0 aluminum and 6023 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 535.0 aluminum and the bottom bar is 6023 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
69
Elongation at Break, % 10
11
Fatigue Strength, MPa 70
120 to 130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
26
Shear Strength, MPa 190
210 to 220
Tensile Strength: Ultimate (UTS), MPa 270
360
Tensile Strength: Yield (Proof), MPa 140
300 to 310

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 630
640
Melting Onset (Solidus), °C 570
580
Specific Heat Capacity, J/kg-K 910
890
Thermal Conductivity, W/m-K 100
170
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
45
Electrical Conductivity: Equal Weight (Specific), % IACS 79
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.6
2.8
Embodied Carbon, kg CO2/kg material 9.4
8.3
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
38 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 150
670 to 690
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
49
Strength to Weight: Axial, points 28
35 to 36
Strength to Weight: Bending, points 35
40
Thermal Diffusivity, mm2/s 42
67
Thermal Shock Resistance, points 12
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 91.5 to 93.6
94 to 97.7
Beryllium (Be), % 0.0030 to 0.0070
0
Bismuth (Bi), % 0
0.3 to 0.8
Boron (B), % 0 to 0.0050
0
Copper (Cu), % 0 to 0.050
0.2 to 0.5
Iron (Fe), % 0 to 0.15
0 to 0.5
Magnesium (Mg), % 6.2 to 7.5
0.4 to 0.9
Manganese (Mn), % 0.1 to 0.25
0.2 to 0.6
Silicon (Si), % 0 to 0.15
0.6 to 1.4
Tin (Sn), % 0
0.6 to 1.2
Titanium (Ti), % 0.1 to 0.25
0
Residuals, % 0 to 0.15
0 to 0.15